
44 The Delphi Magazine Issue 36

Using Windows Resources
by Phil Brown

Resources are such an inescap-
able part of Windows program-

ming that all modern development
environments provide ways of
hiding the nitty gritty detail of
resource files from the application
developer. While in general this
allows for faster and more interac-
tive development, many applica-
tion developers are unfamiliar with
resources and the techniques
required for their effective use.

Before we consider employing
resources in our applications, it is
necessary to understand their
nature. A resource file is simply a
binary file containing arbitrary
data which can be accessed using
predefined identifiers. Resource
files exist in two states: the .RC
source text file and the .RES com-
piled binary file. Although some
tools (including Delphi) manipu-
late resource files in their binary
format directly for the visual
design of forms, as developers it is
only the .RC format that concerns
us. Resource files are edited using
any text editor in this format, and
then a resource compiler (one is
provided with Delphi) is used to
produce the binary .RES file which
can then be included in our appli-
cations. The resource compiler
provided with Delphi 1 is brcc.exe
and that for Delphi 2 and 3 is
brcc32.exe. These are DOS based
command line compilers, but at
least you can create a new associa-
tion for .RC files with the resource
compiler in Windows Explorer to
allow you to right click on a file and
compile it. To enable this, select
View|Options from the Explorer
menu, click on the File Types tab
that appears, then choose New
Type. Type in RC into Associated
extension, then click the New
button. Enter Compile into the
Action edit box in the new dialog,
then use the Browsebutton to select
the resource compiler from the bin
subdirectory where Delphi was
installed and click OK. If you like
you can change the associated

icon to a more distinctive one, and
change the description of the file
type that appears in the Windows
Explorer panel.

The resource file format is very
simple: all entries map an identifier
onto some data. In order to com-
plete the entry, an indication is
required as to the type of the data:
it could be a string, some icon
information or simply some
unknown data (a user defined data
structure). The syntactical format
of the declaration depends upon
the type of data: for example, the
declaration of an icon resource in
the file is:

nameID ICON [[load-mem]] filename

The [load-mem] optional parameter
is a set of flags indicating how the
OS may handle the memory allo-
cated to the resource when the
application is run: they are gener-
ally used for Windows 3.1 compati-
bility and typically default values
are acceptable. nameID is the gen-
eral identifier by which the
resource will be accessed, and can
be either a textual string name or
an integer. The filenameparameter
points to a standard Windows icon
file, and this file must exist when
the resource file is compiled (the
file name can include a fully quali-
fied path).

There are many different kinds
of resources (or data) that can be
defined in an .RC file, but most of
these relate to Windows controls
for C/C++ programs. It is possible
to use these in Delphi, but the
Delphi environment handles inter-
face details much more cleanly, so
there is little point. For custom

resource files, however, there are a
few resource types that are very
useful: the CURSOR, ICON, BITMAP,
STRINGTABLE and RCDATA resources.
Listing 1 shows a complete com-
pilable resource file declaring all of
these types. Do not be confused by
the BEGIN..END definition in the
resource file, it does not follow
standard Delphi syntax!

The example demonstrates two
main things: that the general
format for the types we are inter-
ested in using follows the same
syntax as the ICON example earlier,
and the STRINGTABLE resource
allows us to bind a number of
strings, each with a unique identi-
fier, into the one declaration.

If we compile the .RC file, the
result is a .RES file, but how do we
access the resources in it?
Resources form part of a compiled
program, either an .EXE or a .DLL,
and it is the job of the linker to bind
the resources into the executable.
First, however, the linker must be
told to include the .RES file, and
this is achieved in Delphi with the
$R directive. Including the line {$R
MyResources.RES} in any file
included in the program will direct
the linker to bind those resources
into the executable.

You should already be familiar
with the $R directive: Delphi uses
the statement {$R *.DFM} in each
form file to ensure that the .DFM
resource file is bound in to the
application. The .DFM file is a large
custom data structure that Delphi
uses to define component proper-
ties when forms are created, and is
simply one example of the use of
custom data structures held in
resource files.

CDAudioIcon ICON "Audio.ICO"
SplahScreenLogoBitmap BITMAP "Logo.BMP"
STRINGTABLE
BEGIN
1, "Hello, world"
2, "My first resource file!"

END
READMEFILE RCDATA "ReadMe.TXT"

➤ Listing 1: An example of a complete .RC resource file.

August 1998 The Delphi Magazine 45

As noted before, the identifiers
in a resource file can be either
string names or integer values. It is
generally better to use integer
identifiers as they are accessed
more quickly than string identifi-
ers. Rather than restrict you to
using hard coded values, the
resource file format allows integer
expressions. The #define state-
ment introduces a named constant
and the #include statement allows
the resource compiler to process
another .RC format file in the
middle of the original file. This has
particular benefits as one .RC file
can declare the constants used as
resource identifiers and can be
included in both the main .RC file
(using #include) and a Delphi pro-
gram (using the {$I} directive).
Using this approach it can be guar-
anteed that both the compiled
resources and the Delphi program
are using the same integer values
to identify resources. This is very
convenient as it avoids maintain-
ing two sets of identifiers, one for
the Delphi program and another
for the resource script. Listing 2
contains an example of an include
file which declares two integer
values as expressions, and Listing
3 shows an example of the
resource script which includes the
file and uses the constants.

Note that the Delphi resource
compiler is quite happy interpret-
ing limited Delphi syntax, such as
comments, line terminating semi-
colons and the const keyword. You
may use either of the paired com-
menting standards { ... } and (*
... *), but not the double slash
comment //. This acceptance of
such syntax greatly facilitates the
use of shared constants in both
Delphi source and resource files.
Note that the use of a base identi-
fier value (such as TXT_BASE in our
example) is very common, as inte-
ger identifiers have an allowable
range of 0..65,535 and offsetting all
identifiers from a base value eases
any allocation issues that may
arise later.

Now that we know how to define
resources we can start to put them
to use in our applications. Apart
from storing form descriptions for
languages such as C++, one of the

(* ResourceConstants.inc
*
* Declares constants for resource identifiers
*)
const
TxtBase = 10000;
TxtHelloWorld = TxtBase + 1;
TxtMessage = TxtBase + 2;

➤ Listing 2: A resource script that can be included in both a Delphi
program and a resource file.

#include "ResourceConstants.inc"
STRINGTABLE
BEGIN
TxtHelloWorld, "Hello, world"
TxtMessage, "This is a resource file."

END

➤ Listing 3: A resource file that includes another.

main uses of resource files is to
store all of the string constants for
an application. These constants
are referenced only by identifier
throughout the program, and stor-
ing all of the actual string values in
a single file allows this file to be
translated to a different language
(say Italian) and a different set of
resources bound into the applica-
tion. This provides for easy local-
isation of applications that must be
aware of national boundaries.
Starting with Delphi 3, Inprise actu-
ally provided a new declaration
called resourcestring which facili-
tates this process greatly, hiding
most of the complexity of resource
files from the developer. However,
for Delphi 1 and 2, or for access to
datatypes other than strings, a
custom resource file is still the
only answer.

There are a number of API calls
which are used with resources, but
due to Delphi’s ability to hide most
of the detail from us, we need con-
cern ourselves with just a few.
These are LoadIcon, LoadBitmap and
LoadString which do pretty much
what you expect, they provide

access to the data types held
within a resource file given an iden-
tifier. They also require a handle of
the module that contains the
resources, and fortunately Delphi
provides us with the value we need
for resources stored in applica-
tions in the global HInstance vari-
able. The LoadString API call also
requires parameters for a buffer to
store the string (we can use a
Delphi 2 long string, typecast as a
PChar) and the length of the buffer.
Delphi does provide a function
called LoadStr that performs the
above operations using a much
simpler interface (with just the
resource identifier as an integer
parameter), but this function is not
able to handle resources stored in
anything other than the applica-
tion. The result of the LoadIcon and
LoadBitmap is a Windows resource
handle, which we can simply
assign to the Handle property of
TIcon and TBitmap, Delphi takes
care of the details of releasing the
previous graphic data and display-
ing the new one. Listing 4 shows
examples of loading these three
resource types.

var
Icon1: TIcon;
Bitmap1: TBitmap;
MyStr: String;

procedure LoadResources;
begin
(* note Icon1 and Bitmap1 must already have been created *)
Icon1.Handle := LoadIcon (HInstance, Pointer (ResourceID));
Bitmap1.Handle := LoadBitmap (HInstance, Pointer (ResourceID));
SetLength (MyStr, 512);
SetLength (MyStr, LoadString (HInstance, ResourceID, PChar (MyStr),
Length (MyStr)));

end;

➤ Listing 4: Some code loading data from resources.

46 The Delphi Magazine Issue 36

Note that a complication exists
in the case for strings, which is that
the buffer must be large enough to
store the result obtained from the
resources. The LoadString API call
returns an integer indicating the
length of the string, and so once
the string has been loaded we
should reset the length of the
string using SetLength. To ensure
the buffer is large enough to store
the resource, it is set to be a value
larger than the 256 characters
which is supposed to be the maxi-
mum length of a resource string.
The Delphi resource compiler does
not always enforce this however,
so a value of 512 is used.

Conserving Memory
As noted before, the first parame-
ter to each of these API calls is a
module handle, and so far we have
used HInstance exclusively, for
resources stored in the application
itself. This is perfectly valid, but
has the disadvantage that as the
resources form part of the .EXE,
they will be consuming system
memory all of the time that the
application is loaded. Although for
string resources this is fine, if you
have large resources such as bit-
maps permanently loaded, this can
be wasteful of memory. To this
end, it can be very useful to store
the resources in a DLL, which is
dynamically loaded as the
resources are required. In these
cases the parameter passed as the
module handle to the resource API
calls is simply the DLL handle, ie
that which is returned by the Load-
Library call to dynamically load
the DLL. Note that we cannot use
statically linked DLLs, as these
would consume a similar amount
of memory as if we had bound the
resources into the application.

On this issue’s disk is the source
code for a TResourceLibrary class

which encapsulates access to icon,
bitmap and string resources for
both an application and a DLL. List-
ing 5 shows the code for the class
interface. It can be seen that there
are two constructors, the standard
Create that provides access to the
resources bound in to the current
application, and a CreateForDLL
constructor to which the name of a
DLL is passed, and the class then
provides access to the resources
in the DLL. Two public methods
are available, to load an icon and
bitmap images, and a public prop-
erty, providing indexed access to
strings. To fully gain the benefit of
this class you should use resource
file constants in your application
as previously discussed.

An example application is
included on the disk that demon-
strates access to all three types of
resources. To compile the applica-
tion, you must first compile the
ResourceFile.RC file into a .RES file,
and then compile the ResourceDLL
project that binds the resources
into a DLL. The ResourceDemo
application can then be run which
loads icons, bitmaps and strings
from the DLL into the main applica-
tion. Although not demonstrated
here, the TResourceLibrary class
releases the DLL handle when it is
destroyed, and therefore freeing a
TResourceLibrary instance releases
the memory for the resources.

There is one further Delphi class
that helps in manipulating
resources, the TResourceStream
class. This allows access to data
stored in a resource in a stream-
based manner. Streams are a far
more powerful and flexible way of
dealing with files (and data gener-
ally) than the traditional Pascal file
handles, and are to be strongly
recommended when compatibility
with old Pascal code is not a
consideration. Delphi uses

TResourceLibrary = class
public
constructor Create;
constructor CreateForDLL (DLLFileName: String);
destructor Destroy; override;
// access to known datatypes
procedure LoadIcon (ResourceID: Cardinal; Icon: TIcon);
procedure LoadBitmap (ResourceID: Cardinal; Bitmap: TBitmap);
// access to strings
property Strings[ResourceID: Cardinal]: String; default;

end;

➤ Listing 5: The public interface of the TResourceLibrary class.

ResourceStreams extensively when
loading form data, but there is a
particularly convenient use for it
with respect to application
deployment.

It may be the case that you wish
to ship an application with a
number of related data files which
will be used as required at runtime,
for example say a number of word
processor files stored in RTF
format, which will be printed using
the TRichEdit control for nice for-
matting. Normally, these files
would be stored in a known direc-
tory (typically with the applica-
tion), and would be accessed as
required. The disadvantages of
this approach are that the installa-
tion procedure is more compli-
cated (as more files are involved),
the application must make extra
checks to ensure that the files exist
when they are required, and such
files have a knack of somehow
being ‘uninstalled’ by clients!

Instead, such files can be bound
into the application or into a DLL,
and accessed directly using the
TResourceStream class. Of course,
this does have the disadvantage
that the application will increase in
size (unless you use a DLL), but it
does mean that you need only to
distribute a single .EXE which you
know will have all of the required
data in it. This can considerably
ease deployment issues, especially
for distribution over the web.

A TResourceStream class is cre-
ated using a constructor with typi-
cal resource related parameters
with which we should be familiar:
the Windows module handle (HIn-
stance or the DLL handle), an iden-
tifier for the resource and a string
that indicates the type of data held
in the resource. For these
instances we will use a data type
called RT_RCDATA, which pretty
much means anything we want it
to, the decoding of the data stream
is entirely left down to us. The TRe-
sourceLibrary component again
provides a method that provides
access to a resource stream in a
convenient form, and the demo
application uses this to load a text
file containing the source code for
the class into listbox. Note that the
stream is recreated whenever the

August 1998 The Delphi Magazine 47

property is accessed, and so to use
the property it should either be
assigned to a variable, used in a
with clause, or of course it can be
used as a one-off for statements
such as TStrings.LoadFromStream.

Conclusion
In this article we have explored
some of the ways in which
resource files can be used to
enhance your applications for
localisation, reduced memory con-
sumption and easier deployment.
Resources are such a vital part of
Windows programming that being
able to use them appropriately
adds another technique to the
application developer’s arsenal,
and is one that can provide very
great benefits. If you are interested
in examining the resources used by
an application, the demo project
ResXplor provided with Delphi
allows you to browse both EXE and
DLL files, and can provide insights
into how they are composed.

Philip Brown is a senior consultant
with Informatica Consultancy &
Development, specialising in OO
systems design and training.
When not orienting objects he
enjoys sampling fine wine. He can
be contacted via email at
phil@informatica.uk.com

	Conserving Memory
	Conclusion

